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ABSTRACT 

The general theory is developed for the response of a single degree of 
freedom dynamic system to an arbitrary acceleration forcing function.   Closed' 
form solutions are obtained for a variety of discrete pulse shapes using the 
method of Laplace transforms and the form of the solutions indicated for oscil- 
latory inputs and semi-infinite ramps, in terms of complex Fourier series. 
A comparison of base and mass excitation of the system is included.   In pre- 
viously published work on this subject, analytical solutions are in general 
only given for undamped systems; an exception is the response to a sine-wave, 
which appears in many standard texts.   The dynamic analysis of the human 
body usually considers models involving damping, so that in this area there is 
a definite need for the extensions given. 
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SECTION 1 

INTRODUCTION 

This report is concerned with the behavior of a spring/mass/damper 
system of the type shown in Figure 1.  This model has been used in the past 
to simulate the dynamic response of parts of the human body, in efforts to 
assess human tolerance to acceleration. 

The response of this system to a continuous sinusoidal input is 
frequently treated in engineering texts; however, the solution for other 
types of input is usually confined to an undamped system. Nindlin, et 
al (Ref, 1) have presented results showing the response to a half-cycle sine 
pulse.  'Ithough an analytical solution was given for the zero-damping case, 
the curves for non-zero damping were plotted fron analog computer results. 

In Ref. 2 it is pointed out that in the absence of damping the 
base excitation can be expressed in terms of displacement or velocity as 
alternatives to acceleration. Although this is also possible when damping 
exists, the resulting equations contain more than one input derivative and 
are generally too complicated to be considered for engineering applications. 

We shall therefore confine our attention to the response of the 
system when the base of the spring is accelerated, but it is shown that the 
results are applicable, by a simple substitution, to the situation in which 
the mass is excited while the spring/damper element is grounded. 
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SECTION 2 

THE GENERAL THEORY OF A LINEAR SYSTEM 

H 

2.1     Compariscn of Base and 'lass Excitations: 

applied 

• • 

*6 

we have 

Consider the basic svstem (Fig. 1) with the excitation M* = ^1^) 
at the base. Then, if 

= acceleration of the mass,^ 

= force in the spring,    )(1) 

= force on the damper, 

*S -»-ZKS 

or Ü = 09-6 ^ 2c 6 (2) 

SPRING 
(K) 

since 

and 

Let 7^ ■ 

and S : 

so that 

05- 
Jrr, 

length of spring when unloaded 

deflection of spring 

DAMPER 
(2K) 

Figure 1.  Single Degree of 
Freedom System. 

8 = - Bm^y< 

^ 
- S 4.Ü (3) 

Substituting eq. (3) into eq. (2) and rearranging gives 

X S 4- 2c6 + u^S («+) 

Co..^lder now the case in which the mass experiences a force excita- 
tion "P = P^t) , with the base of the svstem fixed. 



■ 

Corresponding to eq.  (2) we have,  in general. 

and 

,m        m 

Since the base is  fixed, 

U-      = constant, 

at = at =o 
eq.   (3) becomes 

• • •• 
a« =-& 

and substitution into eq.   (S)  leads to 

-S    «     ß   4- 2c6   + (»^S (6) 

This indicates that solutions obtained for the base excitation con- 
figuration can be  applied to mass excitation problems simply i>y substituting 
i-*/m )  for   ü_  . 

2.2 General Solution; 

For a linear system, we have seen that 

• « # 

£>      -*-   2c&    4-  (*5- S =    ScC*1) (7) 

Using the transform T =U^b , eq. (7) becomes 

6"    + 2cS/   4- S -   ^(^ (8) 

where the prime  is used to indicate differentiation with respect to the non- 
dimensional time parameter T , and C - £. 

This equation is most conveniently solved for specific cases by the 
use of the operational calculus.    The Laplacian transform is defined by 

^M       «   f V***^  dT (9) 

using the symbol «t(X ) to denote the transform of the function X(T ). 
The existence  of the transform must be verified when the  function to be  trans- 
formed is not  common enough to be tabulated.    Three sufficiency conditions are 
available; these,  if satisfied, guarantee the existence of <& ( X ): 



(a) x(*C ) is at least piecewise continuous in any interval 
^li****** » where «t, >0 

(b) •U W^)! is bounded near *C = 0 for some n< 1. 

(c)ft  l*C^/|  is bounded for large values of T , for some 
number M. 

In Laplacian notation, eq. (8) becomes 

*(*)[ ^^izv +i]   - ^(a:) + i>oi*>*2$ ^Oo ao 

where 

and 

©o  = initial deflection at T - 0 

(&'}0=  initial velocity at T = 0. 

We shall concern ourselves only with subcritical damping, where 
C < 1.0.  Thus we can employ the substitution 

^  =l-ca (11) 

and write 

(12) 

so that eq. (10) yields 

Taking the inverse transformation and making use of the linearity 
of the operator. 

Ur)    =    *£ -i + K *" 

(s')o^" 
%     . A-,1 fr+Zf+l) 

In the second term of eq. (13), 

(13) 

(*■*■ c)*1 -»- ^ (? ^^)^ -»- Vx du) 



- giving, after inversion. 

(15) 

where CD     = OTCsin   OQ (16) 

For the initial velocity term, 

(17) 

(18) 

Thus the solution to eq. (13) may be written as 

When the motion due to an initial condition only  is required, this 
can be obtained immediately from eq. (18). Moreover, for any forcing func- 
tion, "he initial condition transients are directly additive to the response 
due to the forcing function. Thus we need only consider the variation in eq. 
(18) due to the particular forcing function \£H)  in what follows. 

We shall see in Section 3 that any acceleration input pulse or vi- 
bration has a characteristic peak value y.11 = J_ / vnay f Li IN 

It is convenient to express & in terms of yc , so that eq. (18) becomes 

_&_  ^~,   JEfes!) 12        + initial conditi ons solution.    (19) 

Initial conditions solution: 

yj " ^ l> "" ^  + (6')o ^ + ^ 
Consider the steady-state pait of the solution given in eq. (19): 

The Laplace transform of eq. (20) is simply 

*(*) =     Mia£) 
(f+Z^+T)1 (21) 



so that | '•rf.(fc') (22) 

*ä(^)  may be regarded as the transform of the "output" of the sys- 
tem, with "i^c") the transform of the "input"; thus, subject to quiescent 
initial conditions, we may define 

S/p)     m I *£(£)     = 1(T) (ja, 

- as the system transfer function for the input i^ , with the in- 
put applied to the base of the system as shown in ILg,   1.  It should be noted 
that definition (23) is only unique when the point of application of the in- 
put is specified. 

The transfer function of the system is the Laplace transform of its 
rheonomic normal response (i.e., its response as an explicit function of 
time, for quiescent initial conditions) to a ^irst order unit impulse. 

From eq. (23), it follows that 

= ^-,[^i»)^(v)3 (25) 

Now the inverse transform of the product of two transforms can be 
obtained by means of the convolution theorem: 

= I g(s)*1(t-s)ds 
where 

fid* 

and S is an arbitrary "dummy" variable of integration. 



Thus, when an acceleration input function   yc    is given, the re- 
sponse of a linear system to   y«1   may ^e found by integration of one of equa- 
tions  (26), making use of the known response of the system to a unit impulse. 
Although the technique is based on the Laplace transform approach,  it is not 
necessary to use the transform of the input acceleration  function.     Th.      meth- 
od is probably more useful than the direct inverse transformation pi"    idare 
for cases where the transformation ^(yj1) is not a rational function of -p ,     J 
that the ratio  ^(ycO/C^^tV*"-^"^     cannot be expanded into simple partial 
fractions.     In many cases,  however, the integrand is so complicated that the 
integration becomes very laborious to perform dnalyticdlly, and numerical 
methods are preferable. 

The approach just discussed,  involving the convolution integral, 
may be developed even  further for the special case  of a steady-state oscil- 
latory input.    The input may then be expressed as a complex Fourier series: 

n»-oo 

Where C^ is the nth complex coefficient in the series, and J\. is the frequency 
of oscillation of the input. Cn is given by 

-^     l i,^)^ ^ (38) —P 
'-A. 

The complex exponential form of the Fourier series thus needs only 
one  formula for all its coefficxents, and is more  compact and easier to ma- 
nipulate than the more common trigonometrical form.     It also provides a con- 
venient  transition to Fourier integrals and Fourier transforms. 

Re-writing eq.   (27)  for J,.(*^~«) and substituting into the second of 
equations  (26)  leads to 

fx    - lLcne (29) J>) 
-OB •^» 

T0* . x   -ItuvS 
(30) 

since C^G,    is independent of S 

For convenience, let 

J. 
00 

-tr>,fx.8 
9(s)e ds      =  A(n) (31) 

where ^("O is thus the  Fourier transform of the impulsive response function 
q(«t").     Since 9(^) is zero fortZ<0 ,  the limits of integration can be 0,0© 
or + oo without  affecting the value of the  integral. 



Hence we can write (30) more succinctly as 

8    - ^ A.(^CnC (32) 

For an input which is real, the output must also be real; under 
these conditions eq.   (32) becomes 

^    c=  C0 ^(o)  4-   2Xkn AOrOc^n/xT + fn)\ (33) 

where  ^n   is a phase angle, defined by 

to^K    «   J;>     
I  ^(«^ortwAt dir    (34) 

Since any periodic function can be expressed as a Fourier series to 
a high degree of accuracy, the response of a single degree of freedom system 
to any periodic function can be calculated from eq, (33).  Fourier series 
representations of some periodic functions are given in Table 2 of Section 3. 

It should be noted that the Fourier series expansion of a periodic 
function which has finite discontinuities leads to finite (though not usually 
significant) amplitude overshoots in the region of the discontinuities. For 
example, for a rectangular wave, the Fourier series expansion gives amplitude 
overshoots at the discontinuities which approach a limit of about + 9% of the 
amplitude of the wave as the number of terms in the expansion tendF to in- 
finity (see Fig. 2). At points on the rectangular wave between the disconti- 
nuities the difference is much less, of course, decreasing as the number of 
terms taken in the expansion is increased.  This behavior is due to the fact 
that the Fourier series expansion fails to converge uniformly at the discon- 
tinuities; this is known as the Gibbs phenomenon.  It is discussed in detail 
in Ref. 3. 

Input functions which are nonperiodic (e.g., acceleration pulses) 
may also be treated by a modification of the Fourier series expansion, in the 
form of Fourier integrals and Fourier transforms. Generally speaking, how- 
ever, the method of Laplace transforms usually proves to be more convenient 
to use for such functions. 

Further discussion of the Fourier methods is beyond the scope of 
this report.  A more detailed treatment will be found in, for example, 
Ref. 3. 



i f(t) 3TERMS 
/  5 T^rMS 

4f(t,) MANY TERMS 

^-t; 

Figure  2.     Fourier Series  Approximations   for  Rectangular Wave. 
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SECTION 3 

DISCUSSION OF ACCELERATION INPUTS 

Most Idealized acceleration inputs fall into one of three classes: 

(i)  discrete pulses 

(ii)  oscillatory wave-foms 

and    (iii)  semi-infinite ramps. 

in this paper, the first class has been investigated in greatest 
detail; using the Laplace transform technique, the response of the basic sys- 
tem to several different types of pulse has been analyzed.  For each pulse, 
a family of curves is presented, showing the variation of amplification fac- 
tor with pulse duration, for a range of values of the damping coefficient 
ratio.  These are plotted in Figures 4 through 8.  Amplification factor is 
defined here as the ratio of maximum dynamic deflection to static deflection. 
The pulses considered, together with their Laplace transforms, are summarized 
in Table 1 of this section; the detailed solutions will be found in the 
Appendices. 

Oscillatory inputs may also be solved using Laplace transforms; 
however, a more convenient approach in general is by way of the Fourier se- 
ries expansion of the input function. This method is discussed in detail in 
Section 2 of this paper. The Fourier series representations of some periodic 
functions are presented in Table 2. 

Semi-infinite ramps represent acceleration inputs which start from 
an initial value of zero, and rise in some fashion to a constant acceleration 
level.  Rise-time is the most important parameter for this type of input. 
Table 3 shows some of the ramps commonly encountered, together with their 
Laplace transforms. 

. 
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TABLE 1:  DISCRETE    PULSES. 
TYPE FUNCTION L - TRANSPORM 

DIRAC IMPULSE 

^U-tfi y^-Hat) *{£)- to 
■»■T 

RECTANGULAR PULSE 

X 

•■•t 

Wc = V   (o<t<a) 

= o    (r>a.) 
^a:)=^(i-e-a'') 

MALF-SINE PULSE 

«: 

^•T 

YcsiniLT 
lo<X<ll) 

= o 
+6^ 

) 

VERSED-SINE PULSE 

••T (0<T<a) 
= o (fxx) 

2 Hv^[^]1) 
TRIANGULAR   PULSE 

BC-^'T   4><t<«x) 

•»T a 
= O 

JO-"")' 
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TABLE 5: SEMI-INFINITE   RAMPS. 

TYPE FUNCTION L-TRANSFORM 
VERTICAL   FRONT 

act 
Yc 

yc = Ye  (t>o) 

♦ t 

9 

LINEAR     FRONT 

• •      • • 

Yc 

♦ e 

yc'^kb (o<b<t,) 

=Ye    (t>tR) L (l-e-pt) 

VERSED-SINE    FRONT 

-^t 

Ü   = Yc ( I - COS TT t ) 

(c,<t<tK) 

'=Ye     (t>tR) 

EXPONENTIAL    FRONT 

«c" 
w /.        —a.b\ ae=Yc(l-e     ) 
(t>o) 

-►fc 

m 
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APPENDIX  I 

DIRAC  IMPULSE PUNCTIOH 

From Section 3,  the equation for the  Dirac  impulse function  is 
simply 

with the Laplace transform 

In  (19),  (replacing ^*   by ^ur ) 

(35) 

(36) 

^[(^cy^v . 
(37) 

-CT 

^ 

S»n OJT (38) 

Equation (38) is plotted in Figure 3 for several val-^s of c • 
is interesting to note that in the initial phases of the motion it is ade- 
quately described by a system consisting of a mass and damper: 

It 

i.e. ^._L.(,-e-«') (39) 

As the deflection increases, the spring force becomes important 
enough to cause a divergence from the simple damper result, and returns the 
system to equilibrium, after passing through a maximum deflection. 

We determine the maximum deflection by differentiating eq. (38) 
with respect to «C , then equating to zero. 

i.e. 

dT (u^-Av J 

(UO) 
*   *       * ^mum—m 

Solving for "C* ,  the time at which maximum deflection occurs,  gives 

=  J_a*ckan.*L    •     arsinnj 
7) -c 

(Note  that 1 -►  I as     C 

^*     as 

17 



• 

Substituting for *t in eq. (38), 

U5- ÄW        ^ 

(m) 

X c 
Mote that     ^ ^mq^t     _l_ ^^ g    | 

U» Ay e ' 
 ».  I  as c  ». o 

H,  and 2ZJZSS*    are plotted in Fig. U. 

When the initial deflection is not zero, eq. (38) may be written 

-et 

ab- 
using the substitution "♦ Ä SÜ  0  for brevity, 

where &0 - initial spring deflection. 

This can be simplified to 

lA- AV      ^  v/ 

where  Ö    =    OOCSir)     311)  

Differentiating with respect  to *r  , 

(42) 

(43) 

-5T 
— ce       &»n( 

s ell   J^H-^Ct-*-!     sin(t)T-»-G-»-y) (1+(0 

where  sin ^p =11   as before, 

18 



Equating to zero,  this simplifies to 

nrjT     + e   + nf) «   nir 

Also mr -6-9 

(«45) 

(16) 

(U7) 

Substituting eq.   (46)  and   (47)   into eq.   (US)  gives 

- £ / ü> - e) t—  

where sin   8 =      f=^______^ ^^ (o4e«?))(»48) 

The response of an undamped system to an impulsive velocity cnange, 
for various values of the initial parameter *€ , is given in Figure 5. 

19 
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Figure  3.     Response of a Damped Single  Degree of 
Freedom System to an Impulsive Velocity Change. 
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Figure  H.     Varidtion of Amplificatioa   Factor and  lime  of Maximum 
Deflection with  Damping Coefficient   Ratio,   for an  Impulsively 
Excited  Linear jysten. 
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Figure   b.     Influence  of  Initial  Deflection  I'drameter 
on  Response  of the System to an   Impulse. 
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APPENDIX II 

RECTANGULAR PULSE 

Prom Section 3, 

«  o («I > a) (u9) 

(50) 

In eq.   (19), 

= ^e-»    ij-c 
-a^ 

(51) 

~   I 4- elf*   iin/nnT - ardtat) D j 

where H(T-fl^ denotes the  Heaviside unit function; 

-CT 
^  = I -»- €   sm (tjT — ancban   /0 ") 5o»rer<a (52) 
^ or) v -c  / 

and _       ^     .^.f 

Yc" ^     ( V -c ' 

-e sinfijpr-aj-CTPct-ÄYi^.) jofT>a  (53) 

Differentiating, _ 

4- e"c   cxss/^a — arctan 2.^ 

= e 

23 

sinyr (^<öL)      (5U) 

-C^T-cT)   ,     /      r n ^N   .     «. 



and for the second time-regime. 

sinipT-e   sin ^(T-^     (T>CX) (55) 

We can find T , the time at which ^«^ occurs by setting eq. (55) 
equal to zero, ana solving for time. The value of £m«u« is then found by sub- 
stitu ingT =t* into the equations for S. 

li; For T< <x   t  setting 'nt       = 0 gives 
8>VC

M 

* 
Sin nr^a   = o 

Or)T* = nix 

In  (53).     Snex      _      1 -»- e ^    sln/rnr - c 

Yc" 

and  for n =  1,  we  have 

Smox   =   1 

-cir 

4-e   ^                     ( 

(56) 

(«T < a) (57) 

Vc- 
(Note that  for zero damping, we get  the familiar result   "2^,, = 2,  indicating 
100% overshoot of the system.) 

^ii)  rcr *t ><x    »  e(l'   (55)  leads  to 

e"cT | Sin or)T* - e      sin ^(T*- OL) (      =o 

and, ignoring the trivial result of *! = oo t We get 
*      CCL(  .     * * .       % 

Sin   OQT     a   e       ^  Sm-pT   cos ^OL - CoS'TjT   Sm TlÄ'V 

Dividing through by    gin Oftt   • 
cdJcosii)a    —   cot ijT    sin'ijai 

... oat^T*^      cos nf)a.   - e 
S»Yi   -vja- 

arcban/    ^n ^^ ? 

I     .     e 

-CO. 

whence ^1 =       1      QTctan/     **!*_Ü2^  ? (58) 



In (53), 
-CT* 

- C      Sinm T - o] - onct-on ^ j     (59) 

The response of a damped single degree ot freedom system to a rec- 
tangular-pulse acceleration input is plotted in Figure 6, as t*1 btnoM,/? 1 
versus the non-dimensional pulse duration, <i>A c 

Using figure U, it is possible to calculate the initial slope of 
the olot of «g £gga vs. Ufa.  for any arbitrary pulse, providing a useful check 

. V.' 
on the solutionj this check was applied to the case of the rectangular pulse. 
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APPENDIX III 

HALF-SINE PULbE 

The equation of the pulse, from Section 3, is 

£      =7,." sin s& (o^Zji) 

=  O (T>Jv)     (60) 

with the Laplace transform 

(61) 

Substituting eq. (61) into eq. (19) gives 

In terms of tne Heaviside unit function, 

y 
-c«r 

+ C_ sin 

^ 
f)[-iH)t"*)! 

The phase angles are QJCJ^.^^ /        \ 

We must consider separate solutions for the two time regimes 

(6«0 



* 

(i) T< V^. 

Because of the Heaviside unit function, eq. (63) becomes 

Note that for 2=0, this simplifies to 

y■        i - sv 
5 sin rt*! — JV srn T ( (66) 

since 1^,—«»0 and Ttx—^1T as C —•► 0.  This agrees with the zero-damping solu- 
tion for 1<'^V established in, for example, Ref. U.  Differentiating (66), 

rfhere     Y, =aTX,tan(|g")   = OttSm  OT)     ('K*!''»*1')   (67) 

*t , the time at which S achieves its maximum value, is the solu- 
tion of the equation obtained by setting (67) to zero: 

-z** 
(68) 

J(.-A^+4CV (    K "    *)       K J] 
m 

An explicit solution of eq. (68) in *C , if it exists, is certainly 
not simple to find, except for the case of I =0, when eq. (68) becomes 

ossi\5r  -ocrtT m    0 
so  that _* rr-* 

JIT* = Q.TTn ±a* 

whence, forn = 1, T   -     ^-T1" (69) 
SI ±   I 

Since*€ is necessarily positive, and /L may be less than unity, we must take 
the positive sign in the denominator of eq. (69). 

For non-zero values of c , T is found most directly by a numeri- 
cal-graphical approach. 

(ii)*r >'fVjv 

For this case, since (T— /^/x, ) > 0, the value of the Heaviside 
unit function is unity, and eq. (68) becomes 

OP 



I_ •"■ 5 J_ sin/jt«t -1.) 8 

+ eL Sin (^T-1^) 

Noting that    ^!n.[T-5]-'V;)      =    ^(aT-^-TT) 

we may simplify eq.   (70) to plify eq.   (70)  to 

&_ =        -a el*| sln('»)T-'vO 
4"      JFS^^i^? ^    ( + C

5VA ^.^aH (7i) 

Differentiating eq, (71) with respect toT gives 

+ '«)e'v*sin(^a-vi-'»)^ I (72) 

NOT ^üRX-csinX= ^-t-t*    sin(X+a»tban^) 

= •m(X+V,') 
by the definition of ^ in eq,   (67). 

.*.     (72) becomes ,- . 

(73) 

29 



I 

Equating to zero, we have the equation for 'Z    : 

ignoring the trivial solution of €   =0. 

We can again make tht» useful check of inspecting the zero damping 
case:  for c = 0, eq. (71) becomes 

_§_ _ __^L_ 5 sin At - TT) 4- sin/T-TT-^jOI 

Ä    -^ ,  | -sinCT  -  sm^-7^)?    (75) 

The solution for this case given in Ref. U may easily be rearranged to give 
eq. (76). 

Setting £ = 0 in eq. (75) gives 

Sln^^-ir  -h1r^)+   sin(T#-Tr ^ - %.)      -O 

or COST*      4-        COs(T*    ~  ^Jt) -O 

21* = n-rr ±   ^ 

Finally,   for n =  1, 

^  = 2.   "^   'a  JL                                          (76) 

Substituting forT into eq. (72) leads to 

h 

which agrees with the solution for "••JJ/^* given in Ref, U. 

» 
We need to solve eq. (74) explicitly for T . 

(7/) 



For brevity, write A    =   ^ — '^a 

^ (7«) 

so that eq.   (7<f) becomes 

■ft &c 
s'm OQl    CJOS A    —  OOS njT     sin   A 

S'm r)T*| CXJS A ^ €Cir/A" COS 'S| 

=   OcrS 7)^*^ sin A + e   """sinXi 

.     tan   ^T* =     sin A   ^ C^ Sin 3 

cos A  4- e   ^ CXä'B 

whence "-* • •    ,( sin A-t-e^sinS ? 
I cos's ^e^^owB ) 

T* =    I     arcfan j ^ At-e       »n 3 

or, substituting for A and B, 

Maximum deflection may now be derived by substituting fort =T  in eq. (71). 
The response of the system to a half-cycle sine pulse is plotted in Fig. 7, 
for a range of values of damping coefficient. 

T* = J_ artton  ^(V^-i-e ^'sin(V^^^a)    (79) 

31 
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APPENDIX IV 

VERSED-SINE PULSE 

From Section 3, 

(80) 

i-e   )   (si) 

Using eq.   (19),   and writing    /^   as  D,   for convenience. 

L . -L*-*i       I - e'ap ^('^"Qf)       ^   (82) 

^1 _    Sx 
-       v" "sT«"                           say 

x rc 
where _o 

y"       ^       UoVT)iY-ba^9^^ S 

"il1   ^ V""Ä    ^(^^l-X)^^)} C83) 

(8U) 

33 



The  phase angles are 

V      m   ardtcxnl     IZlh 

%    «    -T^   —  ardran /  gag    \ 

(85) 

The  complete general solution of Eq.   (82)  is thus 

-ST 

- ccrs/DfT-o.]--^) H(t-a) 

- e^"1 »in(<9[t-cx]-^)H(«C-a)j       , 

We now separate the general equation into the twc time regimes ,*!< a, and T>a 

(bgt< a 

so that eq.   (86)   reduces  to 

Vc" 

-  J|    Sin 

^ 

{^-^) 4-1 

(87) 

3U 



Different iating, 

^       ~   Z    \   V ) 

+ e 
-CT        T f-c, Sm^T-^) + CflS^T-^j j 

-CT 
e 6m nnT 

^ 

O  when      T =T     and   S « 6 may 

A graphical method of solution was  used to solve  for 1     , and   ^mo« found by 
3ubstitutingT=t *  into eq.   (87). 

(iOT > a 

For this case,   H(T-»)  =  1,  and eq.   (86) becomes 
-CT / ..v -C[T-«X]   , ^[T-a]-^) 

_ ^     r 
j^S^i 

e~"    sin^T-")^) 

-»-e 
-c[T-<x]  ( 

sm 
V 

(t-a]-^)| 
(89) 

Differentiating^^" with respect  10*1 and simplifying the result gives the 
following  result: 

35 



Ü.  . e'2^ sin "f -      g ^M ->»+^! 

(sm -nPt -aU     ^ sin/tfr-al-X♦> j 

Equating to zero, and solving for^ = *^  gives 

«C*    J arc ban f - ( T. sin Q. - 3x ^ *i)   | 
( T.cosG,    -TT.COS©!     ) 

where 

T. = 

(90) 

3;= I +■ 
3(^0^40^" 

CXJS (v>3) 

9. «    arcban ̂ _^ 

(91) 

I 3"l i^Ö^ + ^e1!? 

is   found by substituting equations  (90)   and  (91)   into 
V       eq.   (89). 

The  response  of the system to a versed-sine pulse  is plotted in  Figure  8. 

3b 



XVHjz/n 
'HOiOVd   NOIlVOIJndWV 

T7 


